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§17.1 PROBLEM CLASSIFICATION

According to S. H. Krandall (1956), engineering problems can be classified into
three categories:

e equilibrium problems
e eigenvalue problems
e propagation problems

Equilibrium problems are characterized by the structural or mechanical deforma-
tions due to quasi-static or repetitive loadings. In other words, in structural and
mechanical systems the solution of equilibrium problems is a stress or deforma-
tion state under a given load. The modeling and analysis tasks are thus to obtain
the system stiffness or flexibility so that the stresses or displacements computed
accurately match the observed ones.

Eigenvalue problems can be considered as extentions of equilibrium problems
in that their solutions are dictated by the same equilibrium states. There is an
additional distinct featurein eigenvalue problems: their solutionsare characterized
by a unique set of system configurations such as resonance and buckling.

Propagation problemsareto predict the subsequent stresses or deformation states of
asystem under the time-varying loading and deformation states. Itiscalled initial-
value problems in mathematics or disturbance transmissions in wave propagation.

Modal testing is perhaps the most widely accepted words for activities involving
the characterization of mechanical and structural vibrations through testing and
measurements. It is primarily concerned with the determination of mode shapes
(eigenvevtors) and modes (eigenvalues), and to the extent possible the damping
ratiosof avibrating system. Therefore, modal testing can beviewed asexperimental
solutions of eigenvalue problems,

There is one important distinction between eigenvalue analysis and modal testing.
Eigenvalue analysis is to obtain the eignvalues and eigenvectors from the analyt-
ically constructed governing equations or from a given set of mass and stiffness
properties. There is no disturbance or excitation in the problem description. On
the other hand, modal testing isto seek after the same eigenval ues and eigenvectors

17-2



173 817.2 STRUCTURAL MODELING BY SYSTEM IDENTIFICATION

by injecting disturbances into the system and by measuring the system response.
However, modal testing in earlier days tried to measure the so-called free-decay
responses to mimick the steady-state responses of equilibrium problems.

Table 1: Comparison of Engineering Analysisand System I dentification

Engineering Analysis

System Identification

Equilibrium

Construct the model first,
then obtain deformations
under any given load.

M easure the dynamic input/output first,
then obtain the flexibility.

Eigenvalue

Construct the model first,
then obtain eigenvalues

without any specified load.

Measure the dynamic input/output first,
then obtain eigenvalues that
corresponds to the specific excitation.

Propagation

Construct the model first,
then obtain responses
for time-varying loads.

M easure the dynamic input/output first,
then obtain the model
corresponds to the specific load

Observe from the above Table that the models are first constructed in engineer-
ing analysis. In system identification the models are constructed only after the
appropriate input and output are measured. Nevertheless, for both engineering
analysis and system identification, modeling is a central activity. Observe aso
that, in engineering analysis, once the model is constructed it can be used for all
of the three problems. On the other hand, the models obtained by system identifi-
cation are usually valid only under the specific set of input and output pairs. The
extent to which a model obtained through system identification can be applicable
to dynamic loading and transient response measurements depends greatly upon the
Input characteristics and the measurement setup and accuracy.
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817.2 STRUCTURAL MODELING BY SYSTEM IDENTIFICATION

Asnoted in the previous section, modeling constitutes akey activity in engineering
anaysis. For example, the finite element method is a discrete structural modeling
methodology. Structural system identification is thus a complementary endeavor
to discrete modeling techniques. A comprehensive modeling of structural systems
iIsshownin Fig. 1. Theentire process of structural modeling isthus made of seven
blocks and seven information transmission arrows (except the feedback 1oop).

Testing consists of thefirst two blocks, Structures and Sgnal Conditioning along
with three actions, the application of disturbances as input to the structures, the
collection of sensor output, and the processing of the sensor output viafiltering for
noise and aliasing treatment.

FFT and Wavelets Transfor ms are software interface with the signal conditionin-
ers. From the viewpoint of system identification, its primary role isto produce as
accurately as possible impul se response functions either in frequency domain or in
time domain variables. It is perhaps the most important software task because all
the subsequent system realizations and the determination of structural model pa-
rameters do depend on the extracted impul se response data. About afourth of this
course will be devoted to learn methods and techniques for extracting the impulse
response functions.

System realization performs the following task:

For the model problem of
plant: X =AXx+ B u
Given measurements of
output: y=Cx+Du
input: u
Determine
system characteristics. A, BC and D

Structural modeling block is to extract physical structural quantities from the
system characteristics or realization parameters (A, B, C, D). Thisis because
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realization characteristics still consist of abstract mathematical models, not neces-
sarily in terms of the desired structural quantities. Specifically, one obtains

Given
realization parameters. A, B, C, and D

Determine either
modal quantities: modes(w) and mode shapes (¢)
or physical matrices. mass (M), stiffness(K) and damping(D)

Finite element model updating, active controls and health monitoring are the
beneficiaries of the preceding four activities. Hence, we will try to touch upon
these topics, perhaps as term projects, depending on how this course progresses
itself before the Thanksgiving recess.

Finally, if necessary, onemay haveto repeat testing, hopefully thistime utilizing the
experiencegained fromthefirst set of activities. Even experienced experimentalists
often must repeat testing. A good experimentalist rarely believes higher initial
results whereas a typical analyst amost always thinks hig/her initial results are
valid!

§17.3 ANALYTICAL SOLUTION OF VIBRATING STRUCTURES

Thissectionisastarting point of aguided tour, though an incompl ete one at best, of
modeling, analysis and structural system identification. To this end, we introduce
a reference problem, which for our case is an analytically known model so that
when we are astray from the tour path, we can all look up the map and hopefully
steer ourselves back to the reference point and continue our tour.
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> 1 - Uy — U3

-y, - ¥ — V3

4/\/\/ my; =1 /\/\ﬁm214/\/\ﬁ my =1

k=1 k, = 10 kg =100

Figure 2. Three DOF Spring-Mass System

817.3.1 Three Degreesof Freedom Model Problem

The model problem we are going to walk through is a 3-DOF (three degrees of
freedom), undamped oscillator given by

The system mass and stiffness matrices, M and K are given by
1 00
M = [O 1 0}
0 0 1
(17.1)

11 -10 0
K= [—10 110 —100:|
0O -—-100 200

whose frequencies (the square root of the eigenvalues) are given by
(2 =[2991168982 6.875901898 16.271904658] rad/sec. (17.2)

and the eigenvectors are given by

0.199992181 —0.815213561 —0.543534706
0.104678951 —0.533789306 0.839113397

0.974189634 0.224712761  0.021417986
¢:[ } (17.3)

The mode shapes (eigenvectors) are plotted below in Fig. 3. Let us now compute
the analytical impulse response functions.
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Figure 3. Mode Shapes of Three DOF Spring-Mass System

§17.3.2 Impulse Response Functions
For agiven forcing function f(t), the model equations are given by

M§+Kqg= f(t) (17.4)

where g is the displacement vector of its dimension (3 x 1). Let us consider the
following special matrix forcing function

st) O 0
f= |: 0O 46t O :| (17.5)
0 0 )

where the unit impulse function §(t) is defined by

/OO sydt=1 (17.6)

e.¢]

Notice we have introduced a matrix-valued forcing function instead of the custom-
ary vector-valued forcing function. Hence, the response or output g should be a

178
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matrix-valued function. The forcing fucntion or input consists of three separate
unit impulse loadings, each applied at one of the three distinct mass locations.
Thisisinfact the most desired testing condition called singleinput multiple output
(SIMO) testing procedure.

There are two ways of characterizing the impulse response functions. frequency
domain and time doamin characterizations. As we are planning to study both
characterizations, we will describe them for the example 3-DOF problem.

81.3.2.1 Frequency Response Functions

In order to obtain the frequency response functions of the model 3-DOF problem
(17.3), we first seek a solution of the form

q = gue'" (17.7)

Upon substituting into (1.4) one obtains

qt) = (—w*M + K)7 1) (17.8)

Fourier transformations of both sides of the above expression yield

Q(w) :foo qt)e 1t dt :/m(—wZM + K)“Ht)e 1t dt (17.9)

Since a convolution of any function with the impulse response function §(t) isthe
function itself, we have
Q(w) = H(w) = (—w?M +K)! (17.10)

There are a total of nine components in the impulse response function H(w) for
this example problem. This can be seen by expanding H (w)

Hyy Hyp Hig
H(w) = | Hy Hy Hy (17.11)
Hy Hzp Hg
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Figure 4. Frequency Response Functions, H(w)

For example, H,, isthe frequency response function at the mass point 1 where the
unitimpulseisapplied. Onthe other hand, H,, and H 5 are due to the unit impulse
load at mass points 2 and 3, respectively. In general, H, . isthe frequency response
of the rth degrees freedom due to the load applied at the mass point s. Figure 4
shows all of the nine componentsvs. frequency (f = w/2r).

Notice that we have the symmetry of the following three components:

H12 = H21
H23 = H32 (17.12)
H13 = H31
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which can be verified from Fig. 4. Thisis due to the fact that the unit impulse
loads applied at the three mass points are the same, and both the mass and stiffness
matrices are symmetric. This property plays an important role in determining the
frequency response functions from measured data.

81.3.2.2 Time-Domain | mpulse Response Functions

Theoretically, the impulse response function h(t) has to be determined from the
following convolution integral

t
q= / hit — 1) f(r) dt (17.13)

Luckily for theimpulseload givenby (17.5), onecan obtainthetime-domainimpuse
response function h(t) either by an analytical approach such as the transition
method and modal superposition technique using the system eigenvalues and their
eigenvectors, or by adirect time integration method. If one chooses the analytical
transition matrix technique, one first transforms the second-order systems into a
first-order equation:

X=Ax+Bu
[ 0 —K
“4=_|\/|—1 0]
[ (17.14)
B__O]
u="f

x=[v q]', v=Mqg
Solution of the above equation is given by

t
x=elt—Wyo + [ A= Bur)dr (17.15)

to

Alternatively, one may invoke the classical modal superposition method. To this

end, we introduce
q=0¢n (17.16)
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Substituting this into the coupled dynamic equation (17.4) gives
' Mo+ ¢ Kpn=09'f (17.17)
Using the identities
d" Mo =1, ¢ K¢ =diag (27 (17.18)
the modal equation can be expressed as
n+Q%n=0 (17.19)
with the following modal initial conditions:

n0) =0, 70 =¢ M (17.20)

Note that the impulse loads ¢ f is replaced by the equivalent initia velocity con-
dition by the momentum conservation relation

At
Q(0)=Q(0_)+At'C'1=M‘1/ fdt, 4(0_) =0
0

(17.21)
7(0) = ¢ 'q(0) ="' §0) =¢p'M
Solution of (17.19) with theinitial condition (17.20) is given by
SinQt/ 0 0
qt) =h(t) = ¢ [ 0 sSinQut/ 2 0 } o' (17.22)
0 0 sin Qgt/ Q3

Finally, a direct time integration, e.g., by using the trapezoidal rule can give an
approximate solution in the form

17-12
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Given the initial condition and:
s =dt/2, §52=38%4

S=M+§2xK
Start integration:
t=t+2§
g=M(@Q" + 59"
qn+% —slg (17.23)
qn+1 — 2qn+% _ qn
qn—i—l — _M—qun+1
ql’H—l — qn + S(qn-i-l + qn)
End the integration
The time-domain impul se response functions are given by qg:
hll h12 h13
h31 h32 h33

Noticeal so that we haveagainthefollowing symmetry from Fig. 5that corresponds
to the result obtained by the frequency method (17.12):

h12 = h21
h13 = h31

§17.4 DISCRETE IMPULSE RESPONSE FUNCTIONS

In the preceding section we have obtained the reference impul se response functions
both in frequency and time domains when the Fourier transforms can be carried
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Figure 5. Time-Domain Impulse Rsponse Functions, h(t)

out exactly. In practice both the forward and inverse Fourier transforms are caried
out by Fast Fourier Transform (FFT) procedure.

In order to appreciate the impact of discrete approximations on the solution accu-
racy, let us consider the first solution component of the modal response equation
(17.19) given by

n(t), = sin(2r f1t) /(2 f), f, = 4.760593E-01 (17.26)
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Figure 6. Fourier Transforms of sin(2z f t)

The only difference between the incorrectly sampled vs. correctly cases is the
number of samples used, 32 vs. 34. The nonzero magnitude in the incorrectly
samped case is known as |eakage phenomenon in FFT-based data processing. This
and related filtering techniques become an integral part of system identification
activities, which we plan to cover in the subsequent sections.

8175 IMPULSE RESPONSESWHEN LOADINGS ARE ARBITRARY

Inthe preceding sectionswe have obtai ned thereferenceimpul seresponsefunctions
both in frequency and time domains when the loadings are the exact unit impulse
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function. This is indeed a luxuary that is difficult to realize in practice. In a
|aboratory testing environment (we will addressthein-situ loadslater), one creates
a series of ramdom bursts that are rich in frequency contents. To simulate such
loadings, fortuntely using MATLAB©, one can generate them by invoking randn
command:

fi= 5 * randn(1,512)

fo = 10 * randn(1,512) (17.27)

f3 = 100* randn(1,512)

It should be noted that the three random number sets in the above command would
in principle be different, since at each time Matlab generates a new set of random
numbers!

Applying the above three forcing functions, the transient response of the three
degrees of freedom oscillator can be obtained as shown in Figs. 7 and 8.

The frequency domain system description of the 3dof oscillator for this forcing
function case can be obtained by using (17.12):

Q(w) =/oo qt)e 1t dt =/Oo(—w2M + K)“Ht)e 1t dt

U
Q(w) = H(w) * f(w)
In the above expressions, * is the frequency-domain counterpart of the time con-

volution integral. The impulse response function H(w) can thus be obtained, only
symbolically, by

(17.28)

H(w) = [Q(w) * fT(&)] [f(w) = fT (0)] 1 ® = conjugateof w  (17.29)

Thistask, especially with experimental data, remains a challenge. A good portion
of this course will be devoted to the extraction of accurate frequency response
functions from multi-input and multi-output (MIMO) systems.
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Figure 7. Randomly Generated Forcing Functions

817.6 A CLASSICAL IDENTIFICATION METHOD

Suppose that we have obtained the impulse response functions either in frequency
domain (Fig. 4) or in time domain (Fig. 5) from measurement data. It should be
noted that the transient response histories under random forcing functions shown
in Fig. 8 are typical of measured data obtained by vibration tests. We now want
to obtain the modes w and the mode shapes ¢ from the impul se response function
H(w) (17.11) or h(t) (17.22).
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Figure 8. Transient Rsponse of 3-DOF System under Random Forcing Functions

81.6.1 Frequency Method

The frequency response function (17.10) can be reexpressed by using (17.18) as

H) = (—w*M +K)™!
=(- P+ Q") (17.30)
— ¢ ( —UJZ 4+ QZ )—1¢T
Therefore, the component-by-component frequency response function H(w);; is
given by
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N
3 . (pik d)jk

The denominatorsin the above equation play an important rolein theidentification
of vibrating structures. In this course it will be called a modal constant or modal
residual constant, given by

Modal (Residual) Constant: KA] = dix Dik (17.32)
Observethat, for multi-degreesof freedom systems, eachmodal constant magnitude
in the modal series expansion of H(w); j dictates the influence of that mode. For
example, one may truncate certain modal contributions if their modal constants

are sufficiently small. Asan example, let us compute the three modal constants of
H11(w) from the 3-DOF example problem given by

N
Hi(w) = Z —(gz?k_(pi';z)

_Z kA1l
1 (Qf — 0?)

where ¢ Aj; can be obtained from (17.3) as

(17.33)

1A11 = ¢Z, = 0.974189634% = 9.490454429E-01
2A1 = ¢35 = 0.224712761% = 5.049582495E-02 (17.34)
3A1 = ¢3, = 0.021417986% = 4.587301242E-04

For convenience, Fig. 4ais reproduced below for discussion.
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Figure 9. Impulse Frequency Function H(w)11

Noticethat thefact that 3 A1; = 4.587301242E-04 issmall compared with the other
two modal constants. This is reflected as a small blip in Fig. 9 at the frequency
Q3 = 16.2719/27 = 2.5898 Hz.

Now suppose that we have obtained the impul se frequency response curves H (w);
from measurements. The first step in constructing the experimentally determined
model isto obtainthemodal constants, A;1. Todeterminethethreemodal constants
1A11, 2A11 and 3 A11, one constructsthefollowing matrix relation for all the discrete
POINtS wmin < @ < Wmax:
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B Hll(a)min) ] [ (Q% _ a)rznin)_l (Q% _ a)ﬁqin)_l (9:2:, _ a)rznin)_l ]
Ha1 (o) A I B (o R e
Hu(ws) |_| @-od)?  (@-w) ™t (@F—w)) [ A
211
' 3A11
- Hll(a)max) — — (Q% - a)rznax)_l (Q% - a)rznax)_l (Qg - a)rznax)_l -~
U

Hi;(n x 1) =R(n x 3) A(3 x 1)
(17.35)
where Hj; denotesthat {Hi1(w), @min < ® < wmax} iSarranged as a vector.

A least sguares solution of the above overdetermined equation would give the
sought-after modal constants for H(w)11

1A11
{ZAH} =[R'RI™ [RTH1y] (17.36)
3An1

The modal constants for the remaining eight frequency response components can
be similarly determined. Finally, the mode shape ¢ which has nine unknowns can
be solved by a nonlinear programming method once the eighteen modal constants

are determined (Remember we have six distinct frequency response functions H;j,
namely, Hi1, Hip, His, H2o, Hoz and His. And each has three modal constants).

81.6.2 A Classical Time Domain M ethod

There exist several classical time domain methods for determining the modes and
mode shapes. Among a plethora of classical methods, we will study Ibrahim’s
method as it can be viewed as a precursor to modern realization algorithm based
on Kalman’'s minimum realization procedure.

The transient response for afirst-order system x(t), see (17.14), can be expressed
from (17.15)

x(t) = eAlx(0), A= [Mo_l _OK ] (17.37)
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Since we have

A=TATl = er=werul

ér ... (17.38)

e)‘=:'eA3

the coupled transient response x(t) can be expressed in terms of the first-order
eigenvalue A and the associated eigenvector W:

x(t) = U M o-1x0) = ¥ eM 20),  x(t) = ¥ z(t) (17.39)

which for the example 3-DOF system becomes

xt)=w e 2(0)

(17.40)
6x1 (6x6) (6x6) (6x1

Therefore, for n-discrete response points one has the following relation:

[X(t1) X(t2) ...x(t)] =" [[eM] [eM2] ... [eMn] ] 20)
2 (17.41)
X(t1) = ¥ A(ty) z(0)

Now if we shift the starting sampling event fromt = t; tot, = t; + At, wehavea
time-shifted equation

[X(t) X(t3) ...X(thy)] = [[eMe] [eMs] ... [eMn+1] ]2(0)

U
X(tz) = ¥ A(tp) z(0)
(17.42)
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Now observe that [e)‘ti +1] can be decomposed as
[eMi+1] = E(at) [eM]

et ]
gaAt . (17.43)

E(At) =

. . ...eN;At

Using this decomposition and (17.41), X(tp) in (17.42) can be written as

X(ty) = ¥ A(ty) z(0) = ¥ E(At) A(ty) z(0) = ¥ E(At) T~ X(ty)
U

17.44
X(ty) = S(AD X(t) (749
S(At) = ¥ E(At) &1
Finally, one obtains
S(At) = [X(t2) XT (t)] [X(t) XT(tp) 171 (17.45)

Once S(At) isdetermined, the system el genval ues and eigenvectors can be obtained
from the following eigenproblem:
S(AHT = W E(Al) (17.46)

It should be noted that the resul ting eigenvectorsare not scaled ingeneral, especially
with respect to the system mass matrix. This and other issues will be discussed in
the following chapters.
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817.7 DISCUSSIONS

As stated in Section 817.2, structural analysis is first to construct the structural
models, viz., the mass, the damping, and stiffness operators. Then by using known
forcing functions or best possible forcing function models, it is to determine the
response of the structure. Sructural system identification on the other hand is to
determine the structural model or model parameters based on the measured forcing
functionsand the measured structural responsedata. Moreprecisely, let usconsider
agenera system model given by (we will derive them in the next chapter)

X(t) = A X(t) + B u(t)

(17.47)
y(t) = C x(t) + D u(t)

Structural analysis is to obtain x for a given u knowing that .4 and B are known
by modeling work, usually by the finite element method or the boundary element
method. Structural system identification is to obtain .4 along with the remaining
three opeartors B, C and D, when u and the sensor output y are available. In
other words, structural analysisisto obtain vectorial quantitiesfrom known matrix
guantities, whereas structural system identification is to obtain matrix quantities
from measured vectoria quantities.

Therefore, the structural response can be obtained uniquely once the structural
model (structural mass, stiffness and damping matrices) and the forcing function
are given. This is not the case in general in determining the structural model
from measured forcing function and measured response data. Thisis because the
information (usually frequency contents) contained in the measured response can
vary widely, depending on the sensor types, sensor locations, and forcing function
characteristics. For example, if theforcing function consists of two tuned harmonic
frequencies, the measured response would capture at most two modes by tuning
the forcing function frequencies to match two of the system modes. Thisis why
one prefersto utilizeforcing functionsthat contain rich enough frequency contents.
This and other related issues will be discussed throughout the course.
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