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Chapter 17: METHODS FOR VIBRATION ANALYSIS 17–2

§17.1 PROBLEM CLASSIFICATION

According to S. H. Krandall (1956), engineering problems can be classified into
three categories:

• equilibrium problems

• eigenvalue problems

• propagation problems

Equilibrium problems are characterized by the structural or mechanical deforma-
tions due to quasi-static or repetitive loadings. In other words, in structural and
mechanical systems the solution of equilibrium problems is a stress or deforma-
tion state under a given load. The modeling and analysis tasks are thus to obtain
the system stiffness or flexibility so that the stresses or displacements computed
accurately match the observed ones.

Eigenvalue problems can be considered as extentions of equilibrium problems
in that their solutions are dictated by the same equilibrium states. There is an
additional distinct feature in eigenvalue problems: their solutions are characterized
by a unique set of system configurations such as resonance and buckling.

Propagation problems are to predict the subsequent stresses or deformation states of
a system under the time-varying loading and deformation states. It is called initial-
value problems in mathematics or disturbance transmissions in wave propagation.

Modal testing is perhaps the most widely accepted words for activities involving
the characterization of mechanical and structural vibrations through testing and
measurements. It is primarily concerned with the determination of mode shapes
(eigenvevtors) and modes (eigenvalues), and to the extent possible the damping
ratios of a vibrating system. Therefore, modal testing can be viewed as experimental
solutions of eigenvalue problems.

There is one important distinction between eigenvalue analysis and modal testing.
Eigenvalue analysis is to obtain the eignvalues and eigenvectors from the analyt-
ically constructed governing equations or from a given set of mass and stiffness
properties. There is no disturbance or excitation in the problem description. On
the other hand, modal testing is to seek after the same eigenvalues and eigenvectors
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17–3 §17.2 STRUCTURAL MODELING BY SYSTEM IDENTIFICATION

by injecting disturbances into the system and by measuring the system response.
However, modal testing in earlier days tried to measure the so-called free-decay
responses to mimick the steady-state responses of equilibrium problems.

Table 1: Comparison of Engineering Analysis and System Identification

Engineering Analysis System Identification

Equilibrium Construct the model first, Measure the dynamic input/output first,
then obtain deformations then obtain the flexibility.

under any given load.

Eigenvalue Construct the model first, Measure the dynamic input/output first,
then obtain eigenvalues then obtain eigenvalues that

without any specified load. corresponds to the specific excitation.

Propagation Construct the model first, Measure the dynamic input/output first,
then obtain responses then obtain the model

for time-varying loads. corresponds to the specific load

Observe from the above Table that the models are first constructed in engineer-
ing analysis. In system identification the models are constructed only after the
appropriate input and output are measured. Nevertheless, for both engineering
analysis and system identification, modeling is a central activity. Observe also
that, in engineering analysis, once the model is constructed it can be used for all
of the three problems. On the other hand, the models obtained by system identifi-
cation are usually valid only under the specific set of input and output pairs. The
extent to which a model obtained through system identification can be applicable
to dynamic loading and transient response measurements depends greatly upon the
input characteristics and the measurement setup and accuracy.
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Chapter 17: METHODS FOR VIBRATION ANALYSIS 17–4

§17.2 STRUCTURAL MODELING BY SYSTEM IDENTIFICATION

As noted in the previous section, modeling constitutes a key activity in engineering
analysis. For example, the finite element method is a discrete structural modeling
methodology. Structural system identification is thus a complementary endeavor
to discrete modeling techniques. A comprehensive modeling of structural systems
is shown in Fig. 1. The entire process of structural modeling is thus made of seven
blocks and seven information transmission arrows (except the feedback loop).

Testing consists of the first two blocks, Structures and Signal Conditioning along
with three actions, the application of disturbances as input to the structures, the
collection of sensor output, and the processing of the sensor output via filtering for
noise and aliasing treatment.

FFT and Wavelets Transforms are software interface with the signal conditionin-
ers. From the viewpoint of system identification, its primary role is to produce as
accurately as possible impulse response functions either in frequency domain or in
time domain variables. It is perhaps the most important software task because all
the subsequent system realizations and the determination of structural model pa-
rameters do depend on the extracted impulse response data. About a fourth of this
course will be devoted to learn methods and techniques for extracting the impulse
response functions.

System realization performs the following task:

For the model problem of

plant: ẋ = A x + B u

Given measurements of

output: y = C x +D u

input: u

Determine

system characteristics: A, B C and D

Structural modeling block is to extract physical structural quantities from the
system characteristics or realization parameters (A, B, C, D). This is because
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Chapter 17: METHODS FOR VIBRATION ANALYSIS 17–6

realization characteristics still consist of abstract mathematical models, not neces-
sarily in terms of the desired structural quantities. Specifically, one obtains

Given

realization parameters: A, B, C, and D

Determine either

modal quantities: modes(ω) and mode shapes (φ)

or physical matrices: mass (M), stiffness(K) and damping(D)

Finite element model updating, active controls and health monitoring are the
beneficiaries of the preceding four activities. Hence, we will try to touch upon
these topics, perhaps as term projects, depending on how this course progresses
itself before the Thanksgiving recess.

Finally, if necessary, one may have to repeat testing, hopefully this time utilizing the
experience gained from the first set of activities. Even experienced experimentalists
often must repeat testing. A good experimentalist rarely believes his/her initial
results whereas a typical analyst almost always thinks his/her initial results are
valid!

§17.3 ANALYTICAL SOLUTION OF VIBRATING STRUCTURES

This section is a starting point of a guided tour, though an incomplete one at best, of
modeling, analysis and structural system identification. To this end, we introduce
a reference problem, which for our case is an analytically known model so that
when we are astray from the tour path, we can all look up the map and hopefully
steer ourselves back to the reference point and continue our tour.
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17–7 §17.3 ANALYTICAL SOLUTION OF VIBRATING STRUCTURES

k1 = 1 k2 = 10 k3 = 100 k4 = 100

u1 u2 u3

y1 y2 y3

m1 = 1 m2 = 1 m3 = 1

Figure 2. Three DOF Spring-Mass System

§17.3.1 Three Degrees of Freedom Model Problem

The model problem we are going to walk through is a 3-DOF (three degrees of
freedom), undamped oscillator given by

The system mass and stiffness matrices, M and K are given by

M =
[ 1 0 0

0 1 0
0 0 1

]

K =
[ 11 −10 0

−10 110 −100
0 −100 200

] (17.1)

whose frequencies (the square root of the eigenvalues) are given by

Ω = [ 2.991168982 6.875901898 16.271904658 ] rad/sec. (17.2)

and the eigenvectors are given by

φ =
[ 0.974189634 0.224712761 0.021417986

0.199992181 −0.815213561 −0.543534706
0.104678951 −0.533789306 0.839113397

]
(17.3)

The mode shapes (eigenvectors) are plotted below in Fig. 3. Let us now compute
the analytical impulse response functions.
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Figure 3. Mode Shapes of Three DOF Spring-Mass System

§17.3.2 Impulse Response Functions

For a given forcing function f(t), the model equations are given by

M q̈ + K q = f(t) (17.4)

where q is the displacement vector of its dimension (3 × 1). Let us consider the
following special matrix forcing function

f =
[

δ(t) 0 0
0 δ(t) 0
0 0 δ(t)

]
(17.5)

where the unit impulse function δ(t) is defined by

∫ ∞

−∞
δ(t) dt = 1 (17.6)

Notice we have introduced a matrix-valued forcing function instead of the custom-
ary vector-valued forcing function. Hence, the response or output q should be a
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17–9 §17.3 ANALYTICAL SOLUTION OF VIBRATING STRUCTURES

matrix-valued function. The forcing fucntion or input consists of three separate
unit impulse loadings, each applied at one of the three distinct mass locations.
This is in fact the most desired testing condition called single input multiple output
(SIMO) testing procedure.

There are two ways of characterizing the impulse response functions: frequency
domain and time doamin characterizations. As we are planning to study both
characterizations, we will describe them for the example 3-DOF problem.

§1.3.2.1 Frequency Response Functions

In order to obtain the frequency response functions of the model 3-DOF problem
(17.3), we first seek a solution of the form

q = q0e jωt (17.7)

Upon substituting into (1.4) one obtains

q(t) = (−ω2M + K)−1f(t) (17.8)

Fourier transformations of both sides of the above expression yield

Q(ω) =
∫ ∞

−∞
q(t)e− jωt dt =

∫ ∞

−∞
(−ω2M + K)−1f(t)e− jωt dt (17.9)

Since a convolution of any function with the impulse response function δ(t) is the
function itself, we have

Q(ω) = H(ω) = (−ω2M + K)−1 (17.10)

There are a total of nine components in the impulse response function H(ω) for
this example problem. This can be seen by expanding H(ω)

H(ω) =
[ H11 H12 H13

H21 H22 H23
H31 H32 H33

]
(17.11)
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Figure 4. Frequency Response Functions, H(ω)

For example, H11 is the frequency response function at the mass point 1 where the
unit impulse is applied. On the other hand, H12 and H13 are due to the unit impulse
load at mass points 2 and 3, respectively. In general, Hrs is the frequency response
of the r th degrees freedom due to the load applied at the mass point s. Figure 4
shows all of the nine components vs. frequency ( f = ω/2π ).

Notice that we have the symmetry of the following three components:

H12 = H21

H23 = H32

H13 = H31

(17.12)
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17–11 §17.3 ANALYTICAL SOLUTION OF VIBRATING STRUCTURES

which can be verified from Fig. 4. This is due to the fact that the unit impulse
loads applied at the three mass points are the same, and both the mass and stiffness
matrices are symmetric. This property plays an important role in determining the
frequency response functions from measured data.

§1.3.2.2 Time-Domain Impulse Response Functions

Theoretically, the impulse response function h(t) has to be determined from the
following convolution integral

q =
∫ t

−∞
h(t − τ) f(τ ) dτ (17.13)

Luckily for the impulse load given by (17.5), one can obtain the time-domain impuse
response function h(t) either by an analytical approach such as the transition
method and modal superposition technique using the system eigenvalues and their
eigenvectors, or by a direct time integration method. If one chooses the analytical
transition matrix technique, one first transforms the second-order systems into a
first-order equation:

ẋ = A x + B u

A =
[

0 −K
M−1 0

]

B =
[

I
0

]
u = f

x = [ v q ]T , v = Mq̇

(17.14)

Solution of the above equation is given by

x = eA(t − t0)x(0) +
∫ t

t0

eA(t − τ) B u(τ ) d τ (17.15)

Alternatively, one may invoke the classical modal superposition method. To this
end, we introduce

q = φ η (17.16)

17–11



Chapter 17: METHODS FOR VIBRATION ANALYSIS 17–12

Substituting this into the coupled dynamic equation (17.4) gives

φT Mφ η̈+ φT Kφ η = φT f (17.17)

Using the identities

φT Mφ = I, φT Kφ = diag (Ω2) (17.18)

the modal equation can be expressed as

η̈+ Ω2η = 0 (17.19)

with the following modal initial conditions:

η(0) = 0, η̇(0) = φT M−1 (17.20)

Note that the impulse loads φT f is replaced by the equivalent initial velocity con-
dition by the momentum conservation relation

q̇(0) = q̇(0−) + 
t q̈ = M−1
∫ 
t

0
f d t, q̇(0−) = 0

η̇(0) = φ−1q̇(0) = φT q̇(0) = φT M−1

(17.21)

Solution of (17.19) with the initial condition (17.20) is given by

q(t) = h(t) = φ

[ sin �1t/�1 0 0
0 sin �2t/�2 0
0 0 sin �3t/�3

]
φT (17.22)

Finally, a direct time integration, e.g., by using the trapezoidal rule can give an
approximate solution in the form
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Given the initial condition and:

δ = dt/2, δ2 = δ ∗ δ

S = M + δ2 ∗ K

Start integration:

t = t + 2δ

g = M(qn + δq̇n)

qn+ 1
2 = S−1g

qn+1 = 2qn+ 1
2 − qn

q̈n+1 = −M−1Kqn+1

q̇n+1 = q̇n + δ(q̈n+1 + q̈n)

End the integration

(17.23)

The time-domain impulse response functions are given by q:

h(t) = q(t) =
[ h11 h12 h13

h21 h22 h23
h31 h32 h33

]
(17.24)

Notice also that we have again the following symmetry from Fig. 5 that corresponds
to the result obtained by the frequency method (17.12):

h12 = h21

h23 = h32

h13 = h31

(17.25)

§17.4 DISCRETE IMPULSE RESPONSE FUNCTIONS

In the preceding section we have obtained the reference impulse response functions
both in frequency and time domains when the Fourier transforms can be carried
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Figure 5. Time-Domain Impulse Rsponse Functions , h(t)

out exactly. In practice both the forward and inverse Fourier transforms are caried
out by Fast Fourier Transform (FFT) procedure.

In order to appreciate the impact of discrete approximations on the solution accu-
racy, let us consider the first solution component of the modal response equation
(17.19) given by

η(t)1 = sin(2π f1t)/(2π f1), f1 = 4.760593E-01 (17.26)
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Figure 6. Fourier Transforms of sin(2π f t)

The only difference between the incorrectly sampled vs. correctly cases is the
number of samples used, 32 vs. 34. The nonzero magnitude in the incorrectly
samped case is known as leakage phenomenon in FFT-based data processing. This
and related filtering techniques become an integral part of system identification
activities, which we plan to cover in the subsequent sections.

§17.5 IMPULSE RESPONSES WHEN LOADINGS ARE ARBITRARY

In the preceding sections we have obtained the reference impulse response functions
both in frequency and time domains when the loadings are the exact unit impulse
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function. This is indeed a luxuary that is difficult to realize in practice. In a
laboratory testing environment (we will address the in-situ loads later), one creates
a series of ramdom bursts that are rich in frequency contents. To simulate such
loadings, fortuntely using MATLAB c©, one can generate them by invoking randn
command:

f1 = 5 * randn(1,512)

f2 = 10 * randn(1,512)

f3 = 100* randn(1,512)

(17.27)

It should be noted that the three random number sets in the above command would
in principle be different, since at each time Matlab generates a new set of random
numbers!

Applying the above three forcing functions, the transient response of the three
degrees of freedom oscillator can be obtained as shown in Figs. 7 and 8.

The frequency domain system description of the 3dof oscillator for this forcing
function case can be obtained by using (17.12):

Q(ω) =
∫ ∞

−∞
q(t)e− jωt dt =

∫ ∞

−∞
(−ω2M + K)−1f(t)e− jωt dt

⇓
Q(ω) = H(ω) ∗ f(ω)

(17.28)

In the above expressions, ∗ is the frequency-domain counterpart of the time con-
volution integral. The impulse response function H(ω) can thus be obtained, only
symbolically, by

H(ω) = [Q(ω) ∗ fT (ω̄)] [f(ω) ∗ fT (ω̄)]−1 ω̄ = conjugate of ω (17.29)

This task, especially with experimental data, remains a challenge. A good portion
of this course will be devoted to the extraction of accurate frequency response
functions from multi-input and multi-output (MIMO) systems.
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Figure 7. Randomly Generated Forcing Functions

§17.6 A CLASSICAL IDENTIFICATION METHOD

Suppose that we have obtained the impulse response functions either in frequency
domain (Fig. 4) or in time domain (Fig. 5) from measurement data. It should be
noted that the transient response histories under random forcing functions shown
in Fig. 8 are typical of measured data obtained by vibration tests. We now want
to obtain the modes ω and the mode shapes φ from the impulse response function
H(ω) (17.11) or h(t) (17.22).
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Figure 8.Transient Rsponse of 3-DOF System under Random Forcing Functions

§1.6.1 Frequency Method

The frequency response function (17.10) can be reexpressed by using (17.18) as

H(ω) = (−ω2 M + K)−1

= (−ω2 φ φT + φ Ω2 φT )−1

= φ ( −ω2 + Ω2 )−1φT

(17.30)

Therefore, the component-by-component frequency response function H(ω)i j is
given by
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Hi j (ω) =
N∑

k=1

φik φjk

(�2
k − ω2)

=
N∑

k=1

k Ai j

(�2
k − ω2)

(17.31)

The denominators in the above equation play an important role in the identification
of vibrating structures. In this course it will be called a modal constant or modal
residual constant, given by

Modal (Residual) Constant: k Ai j = φik φjk (17.32)

Observe that, for multi-degrees of freedom systems, each modal constant magnitude
in the modal series expansion of H(ω)i j dictates the influence of that mode. For
example, one may truncate certain modal contributions if their modal constants
are sufficiently small. As an example, let us compute the three modal constants of
H11(ω) from the 3-DOF example problem given by

H11(ω) =
N∑

k=1

φ1k φ1k

(�2
k − ω2)

=
N∑

k=1

k A11

(�2
k − ω2)

(17.33)

where k Ai j can be obtained from (17.3) as

1 A11 = φ2
11 = 0.9741896342 = 9.490454429E-01

2 A11 = φ2
21 = 0.2247127612 = 5.049582495E-02

3 A11 = φ2
31 = 0.0214179862 = 4.587301242E-04

(17.34)

For convenience, Fig. 4a is reproduced below for discussion.
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Figure 9. Impulse Frequency Function H(ω)11

Notice that the fact that 3 A11 = 4.587301242E-04 is small compared with the other
two modal constants. This is reflected as a small blip in Fig. 9 at the frequency
�3 = 16.2719/2π = 2.5898 H z.

Now suppose that we have obtained the impulse frequency response curves H(ω)i j

from measurements. The first step in constructing the experimentally determined
model is to obtain the modal constants k A11. To determine the three modal constants
1 A11, 2 A11 and 3 A11, one constructs the following matrix relation for all the discrete
points ωmin ≤ ω ≤ ωmax :
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


H11(ωmin)

H11(ω2)

H11(ω3)

.

.

H11(ωmax )


 =




(�2
1 − ω2

min)
−1 (�2
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min)

−1 (�2
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min)
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(�2
1 − ω2

2)
−1 (�2

2 − ω2
2)

−1 (�2
3 − ω2

2)
−1

(�2
1 − ω2

3)
−1 (�2

2 − ω2
3)

−1 (�2
3 − ω2

3)
−1

.

.

(�2
1 − ω2

max )
−1 (�2

2 − ω2
max )

−1 (�2
3 − ω2

max )
−1




[
1 A11

2 A11

3 A11

]

⇓
Hv

11(n × 1) = R(n × 3) A(3 × 1)

(17.35)

where Hv
11 denotes that {H11(ω), ωmin ≤ ω ≤ ωmax } is arranged as a vector.

A least squares solution of the above overdetermined equation would give the
sought-after modal constants for H(ω)11

[
1 A11

2 A11

3 A11

]
= [RT R]−1 [RT Hv

11] (17.36)

The modal constants for the remaining eight frequency response components can
be similarly determined. Finally, the mode shape φ which has nine unknowns can
be solved by a nonlinear programming method once the eighteen modal constants
are determined (Remember we have six distinct frequency response functions Hi j ,
namely, H11, H12, H13, H22, H23 and H33. And each has three modal constants).

§1.6.2 A Classical Time Domain Method

There exist several classical time domain methods for determining the modes and
mode shapes. Among a plethora of classical methods, we will study Ibrahim’s
method as it can be viewed as a precursor to modern realization algorithm based
on Kalman’s minimum realization procedure.

The transient response for a first-order system x(t), see (17.14), can be expressed
from (17.15)

x(t) = eAt x(0), A =
[

0 −K
M−1 0

]
(17.37)
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Since we have

A = Ψ λΨ−1, ⇒ eA = Ψ eλ Ψ−1

eλ =




eλ1 . . . .

. eλ2 . . .

. . eλ3 . .

. . . . .

. . . . .

. . . . eλn




(17.38)

the coupled transient response x(t) can be expressed in terms of the first-order
eigenvalue λ and the associated eigenvector Ψ:

x(t) = Ψ eλt Ψ−1x(0) = Ψ eλt z(0), x(t) = Ψ z(t) (17.39)

which for the example 3-DOF system becomes

x(t) = Ψ eλt z(0)

(6 × 1) (6 × 6) (6 × 6) (6 × 1)
(17.40)

Therefore, for n-discrete response points one has the following relation:

[ x(t1) x(t2) . . . x(tn) ] = Ψ
[

[eλt1] [eλt2] . . . [eλtn ]
]

z(0)

⇓
X(t1) = Ψ Λ(t1) z(0)

(17.41)

Now if we shift the starting sampling event from t = t1 to t2 = t1 + �t , we have a
time-shifted equation

[ x(t2) x(t3) . . . x(tn+1) ] = Ψ
[

[eλt2] [eλt3] . . . [eλtn+1]
]

z(0)

⇓
X(t2) = Ψ Λ(t2) z(0)

(17.42)
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Now observe that [eλti+1] can be decomposed as

[eλti+1] = E(�t) [eλti ]

E(�t) =




eλ1�t . . . . .

. eλ2�t . . . .

. . . . . .

. . . . . .

. . . . . eλ6�t




(17.43)

Using this decomposition and (17.41), X(t2) in (17.42) can be written as

X(t2) = Ψ Λ(t2) z(0) = Ψ E(�t) Λ(t1) z(0) = Ψ E(�t) Ψ−1 X(t1)

⇓
X(t2) = S(�t) X(t1)

S(�t) = Ψ E(�t) Ψ−1

(17.44)

Finally, one obtains

S(�t) = [X(t2) XT (t1)] [X(t1) XT (t1) ]−1 (17.45)

Once S(�t) is determined, the system eigenvalues and eigenvectors can be obtained
from the following eigenproblem:

S(�t)Ψ = Ψ E(�t) (17.46)

It should be noted that the resulting eigenvectors are not scaled in general, especially
with respect to the system mass matrix. This and other issues will be discussed in
the following chapters.
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§17.7 DISCUSSIONS

As stated in Section §17.2, structural analysis is first to construct the structural
models, viz., the mass, the damping, and stiffness operators. Then by using known
forcing functions or best possible forcing function models, it is to determine the
response of the structure. Structural system identification on the other hand is to
determine the structural model or model parameters based on the measured forcing
functions and the measured structural response data. More precisely, let us consider
a general system model given by (we will derive them in the next chapter)

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t) +D u(t)
(17.47)

Structural analysis is to obtain x for a given u knowing that A and B are known
by modeling work, usually by the finite element method or the boundary element
method. Structural system identification is to obtain A along with the remaining
three opeartors B, C and D, when u and the sensor output y are available. In
other words, structural analysis is to obtain vectorial quantities from known matrix
quantities, whereas structural system identification is to obtain matrix quantities
from measured vectorial quantities.

Therefore, the structural response can be obtained uniquely once the structural
model (structural mass, stiffness and damping matrices) and the forcing function
are given. This is not the case in general in determining the structural model
from measured forcing function and measured response data. This is because the
information (usually frequency contents) contained in the measured response can
vary widely, depending on the sensor types, sensor locations, and forcing function
characteristics. For example, if the forcing function consists of two tuned harmonic
frequencies, the measured response would capture at most two modes by tuning
the forcing function frequencies to match two of the system modes. This is why
one prefers to utilize forcing functions that contain rich enough frequency contents.
This and other related issues will be discussed throughout the course.
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